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Abstract. We analyze the task of selecting the most 
reliable units within a fleet of vehicles and formulate it as a 
prediction and classification problem. The prediction of each 
unit’s remaining life is based on the identification of “peer” 
units, i.e. vehicles with similar utilization and maintenance 
records that are expected to behave similarly to the unit under 
consideration. With these peers, we construct local predictive 
models to estimate the unit’s remaining life. We use 
evolutionary algorithms (EA’s) to develop the criteria for 
defining peers and the relevance of each criterion in 
evaluating similarity with the unit. Each individual in the 
EA’s population fully characterizes an instance-based fuzzy 
model that is used to predict the unit’s remaining life. The 
precision of the selection of units with best-expected life 
provides the fitness value. We analyzed the performance of 
the evolutionary approach over two years of operation and 
maintenance data for a fleet of 1100 locomotives. The results 
illustrate the high accuracy and robustness of this approach. 
In the conclusion, we highlight the implications of this 
approach for supporting the lifecycle of the fuzzy models. 

I. INTRODUCTION 

The behavior of complex electromechanical assets, such as 
locomotives, tanks, and aircrafts, varies considerably across different 
phases of their lifecycle. Assets that are identical at the time of 
manufacture will ‘evolve’ into somewhat individual systems with 
unique characteristics based on their usage and maintenance history. 
Utilizing these assets efficiently requires a) being able to create a 
model characterizing their expected performance, and b) keeping 
this model updated as the behavior of the underlying asset changes. 
This paper outlines a fuzzy peer-based approach for performance 
modeling combined with an evolutionary framework for model 
maintenance. A series of experiments using data from locomotive 
operations were conducted and the results from this initial validation 
exercise are presented.  

A. Problem Description 

The focus of this series of experiments is mission 
reliability. This can be broadly defined as – given a mission 
of duration X days, what percentage of units assigned to that 
mission are able to complete the mission without a critical 
failure. The motivation for high mission reliability in both 
commercial and DOD environments is two-fold. First, it 
makes mission planning and execution more predictable and 
effective. Second, it reduces the logistics footprint required to 
support a certain level of readiness. In the military domain, it 
may mean picking the best 5 vehicles to conduct a 
reconnaissance mission in swampy terrain. In the commercial 
sector, it may imply selecting the best 5 locomotives to 
deliver time-critical shipments from coast to coast. This 
problem is accentuated in the case of new mission types or 
new equipment platforms when insufficient data exists on 
how the equipment will behave in that environment. 

B. Paper Structure  

In section 2, we cite related work and define the focus of 
our work: the use of evolutionary search for model generation 
and maintenance. In section 3, we describe the data used to 
evolve out models, and the baselines and metrics used to 
evaluate our experiments. In section 4, we formalize our 
proposed approach, the evolution of peer-based predictive 
models. In the last two sections, we show the results of our 
experiments, describe the promise of this methodology, and 
discuss its possible future extensions.  

II. RELATED WORK 

A.  Model Characterization 

A model is characterized by its representation (structural 
and parametric information) and its associated reasoning 
mechanism, which is usually related to the representation. 
The generation and updating of a model requires a search 
method to define the model’s representation and resolve any 
degree of freedom in designing its reasoning mechanism. 
This definition applies across a broad class of models, 
ranging from a common representation for physics-based 
models (Linear Differential Equations), to widely popular 
probabilistic models (Bayesian Belief Networks), to powerful 
functional approximators (Neural and Fuzzy Systems) and to 
non-graphical representation, such as instance-based models. 
This is summarized in Table I and further described in [1]. 
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B. Evolutionary Approach to Designing Models 

The main contribution of our methodology is the use of 
evolutionary search to generate instance-based predictive 



models. In the past, EA’s have been extensively used to 
evolve neural networks [2-3], Bayesian belief networks [4], 
fuzzy systems [5], and case-based classifiers [6]. However, to 
the best of our knowledge, they have never been used to 
design instance-based predictors. 

III. DATA COLLECTION AND EXPERIMENTS SET-UP 

A. Data Sources 
The data used to train our model and validate our 

experiments were collected from four different sources, as 
illustrated in Figure 1. 

Data Categories:
- Configuration Information (Source: GE Rail)

- Maintenance & Repair Information
Fault Codes (Source: Locomotive’s EOA™)
Recommendations (Source: GE Rail)
Repairs  (Source: GE Rail /Railroads)

- Utilization Information (Source: Railroads)

Data Links

GE Rail Locomotives Services,
Design & Engineering

Railroad Yards

Utilization Information
(1 download/~ 30 days)

Locomotives with EOA ™Service

Fault codes 
(3 uploads/day)

Recommendations
(4-8 Rx/yr)

GE Rail /Railroads Repair Shops

Repair Execution
(4-8 Repairs/yr)

 Fig 1. Data sources and Data compilation 
1) Locomotive Design & Engineering Data from GE Rail: 

GE Rail manufactured the locomotives in this study. As the 
OEM, GE Rail possessed engineering data on locomotive 
models, configurations, date of manufacture, date of service, 
the date EOA service was installed, upgrades and software 
modifications (Figure 1 top-right corner). 

2) Locomotive Recommendation Data from GE Rail 
EOA  remote monitoring and diagnostics service: For each 
locomotive, there was a time-stamped record of when the 
Expert on Alert (EOA ) system detected abnormal patterns 
in the fault data (Figure 1 top-left corner), leading to a 
recommendation being issued by GE Rail Locomotive 
Services (Figure 1 top-right corner). A red or yellow 
recommendation indicated a problem that was serious and 
required a fix in the next 7-10 days at most.  

3) Locomotive Maintenance Data from Repair Shops: 
Each red or yellow recommendation used in the experiments 
was associated with maintenance feedback from railroads or 
GE repair shops (Figure 1 bottom-right corner), which 
indicated the exact repair action that successfully fix the 
problem. This allowed us to screen the data and include only 
maintenance intervals where a genuine problem existed on 
the locomotive that was verified by the maintenance 
personnel.  

4) Locomotive Utilization data from a selected railroad: 
Each locomotive maintains an on-board record of a 

number of utilization-related parameters that are collected 
when a locomotive reaches a railroad yard (Figure 1 bottom-
left corner). These parameters include odometer miles, total 
megawatt-hours, hours spent motoring, hours spent in 
dynamic braking, cumulative engine hours, cumulative 

engine hours moving, percentage of time spent in each of the 
eight notch settings (analogous to gear settings) and others. 

B. Data Segmentation 
We wanted to investigate how environmental, operational, 

or maintenance changes could affect our experiments and 
whether our learning techniques could adapt to such changes. 
Furthermore, we needed to assess how the incremental 
acquisition of data could improve the performance of our 
learning techniques. To this end we decided to create three 
data slices, on May 22, 2002, November 1, 2002, and May 1, 
2003, respectively. The size of the fleet increased over time 
(from 262 to 634 and 845 units, respectively), as new units 
were placed in service and as we started collecting more 
utilization and maintenance data from previous units. As a 
result the number of the best 20% performers increased with 
the size of the fleet to 52, 127, and 169 units, respectively. 
This is shown at the bottom of Figure 2.  

Slice 1
Slice 2

Slice 3

Repair

Recommendation

Time Slice 1:
22 May 2002

Time slice 2:
01 Nov 2002

Time Slice 3:
01 May 2003

262 units 634 units 845 units 965 units

20% Threshold 
= 49 days

20% = 52 units

20% Threshold 
= 52 days

20% = 127 units

20% Threshold 
= 75 days

20%= 169 units

20% Threshold 
= 71 days

01 Nov 2003

Full fleet

 Fig 2: Data Slices used in Experiments  
These three data slices were used to determine the target 

units for our selection. For each data slice we constructed 
three sets of targets (i.e., ground truth for the experiments): 1) 
the best 20 % past performers; 2) the best 52 past 
performers; 3) the best 20% future performers. We identified 
the first two target sets by sorting the units in decreasing 
order using the median time-between-failure of past 
operational durations, until we identified the best 20% or the 
best 52 units. We identified the last target set by sorting the 
units in decreasing order using the duration of the first period 
of operation after the data slice. 

C. Performance Metric 
 The primary metric was the ability of a classifier to select 

the best N units in any given slice (i.e., its precision). We 
investigated two approaches to define the top ‘N’ units. 

1) Fixed Percentage Approach: In the fixed percentage 
approach, the task of the classifier was to pick the top 20% of 
units. The actual number of units to be selected increased 
with fleet size as we progressed from slice 1 to slice 3. 

2) Fixed Number Approach: In the fixed number of units 
approach, the actual number of units to be selected was kept 
constant. In the experiments, the number used was 20% of the 
first slice, i.e. 52 units. As the size of the fleet increased, the 
selection task got harder as 52 units represented 12% and 6% 
of the fleet size in slices 2 and 3 respectively. 



D. Baselines 
Two baselines were calculated to measure the increase in 

capability provided by the collective mind algorithms.  
1) Random: The first baseline measured the expected 

performance if selection of the best N units were done 
randomly. This obviously represented a worst-case scenario.  

2) Heuristics: The second baseline was the best 
performance achieved by single or multiple heuristics (based 
on any of the measured or calculated parameters) which we 
used to rank the fleet and pick the best N units. 

IV. PROPOSED LEARNING METHODOLOGY 

A. Peer-based Learning Methodology 

In our experiments we wanted to explore peer-based 
learning methodologies, since they provide a transparent, 
adaptable model mechanism. We focused on the 
representation and reasoning mechanisms of instance-based 
reasoning. After developing several exploratory peer-based 
models, using a manual process based on WEKA [7], we 
decided to use a fuzzy instance-based classifier (FIBC) 
designed by an evolutionary search (instead of a manual 
process). In section IV B, we will describe the FIBC, while 
its EA-based design will be detailed in section IV C. 

B. Fuzzy Instance-Based Classifiers (FIBC) 

Instance-based reasoning (IBR) relies on a collection of 
previously experienced data that can be kept in their raw 
representation. Unlike Case-based Reasoning (CBR), they do 
not need to be refined, abstracted and organized as cases. 
Like CBR, IBR is an analogical approach to reasoning, since 
it relies upon finding previous instances of similar problems 
and uses them to create an ensemble of local models. Hence 
the definition of similarity plays a critical role in the 
performance of IBR’s. Typically, similarity will be a dynamic 
concept and will change over the use of the IBR. Therefore, it 
is important to apply learning methodologies to define and 
adapt it. Furthermore, the concept of similarity is not crisply 
defined, creating the need to allow for some degree of 
vagueness in its evaluation. We addressed this issue by 
evolving the design of a similarity function in conjunction 
with the design of the attribute space in which the similarity 
was evaluated. Specifically we used the following four steps: 

1) Retrieval of similar instances from the Data Base  
2) Evaluation of similarity measure between the probe 
and the retrieved instances 
3) Creation of local models using the most similar 
instances (weighted by their similarity measures) 
4) Aggregation of outputs of local model to probe  
 

1) Retrieval: The retrieval step consists in finding all DB 
instances whose behavior is similar to the probe. These 
instances are the probe’s potential peers and can be seen as 
points in an n-dimensional feature space. For instance, let us 
assume that a probe Q has an associated n-dimensional vector 
of values for each potential attribute: 

 ],...,,[ ,,2,1 QnQQ xxxQ =                         (1) 

A similar n-dimensional vector characterizes each unit ui 
in the fleet. Furthermore, each unit has an attached vector 
O(ui)=[D1,i , D2,i , …, Dk(i),i] containing its historic operational 
availability durations:  

],...,,[ )( ;],...,,[ ),(,2,1,,2,1 iikiiiiniii DDDuOxxxu ==   (2) 

For each dimension i, we define a Truncated Generalized 
Bell Function, TGBFi(xi;ai,bi,ci), centered at the value of the 
probe ci,, which represents the degree of similarity along that 
dimension. Specifically: 
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where ε is the truncation parameter, e.g. ε =10-5 

Since the parameters ci in each TGBFi are determined by 
the values of the probe, each TGBFi has only two free 
parameters, ai and bi, to control its spread and curvature. In a 
coarse retrieval step, we extract an instance in the DB if all of 
its features are within the support of the TGBF’s, using 
standard SQL queries. Now we can formalize the retrieval 
step. P(Q), the set of potential peers of Q to be retrieved, is 
composed of all units within a range from the value of Q: 

{ })(|,...,1,)( QNumjuQP jj ∈==  and N(Q) - a neighborhood 

of Q – is defined by the constraint 
ijiQi Rxx <− ,,
 for all 

potential attributes i for which their corresponding weight is 
non-zero. Ri is half of the support of the TGBFi , centered on 
the probe’s coordinate xi,Q.  

2) Similarity Evaluation: Each TGBFi is a membership 
function representing the degree of satisfaction of constraint 
Ai(xi). Thus, TGBFi measures the closeness of an instance 

around the probe value Qix ,  along the ith attribute.  For a 

potential peer Pj, we evaluate ),, ;( ,,, Qiiijiji xbaxTGBFS = , 

its similarity with the probe Q along each attribute i. The 
values (ai, bi) are design choices initially chosen manually, 
and later determined by the EA’s.  Since we want the most 
similar instances to be the closest to the probe along all n 
attributes, we use a similarity measure defined as the 
intersection (minimum) of the constraint-satisfaction values: 
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Equation (4) implies that each attribute is equally 
important in computing similarity. In our case, however, we 
consider each criterion to have a different relevance in that 
computation. Therefore, we attach a weight wi to each 
attribute Ai and we extend the notion of similarity measure 
between Pj and the probe Q using a weighted minimum 
operator: 
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where wi ∈ [0,1]. The set of values for the weights {wi} and of 
the parameters {(ai, bi )} are critical design choices that 
impact the proper selection of peers. In this section we 
assume a manual setting of these values. In section IV C we 
will explain their derivation using evolutionary search. 

3) Creation of Local Models: The idea of avoiding pre-
constructed models and creating local model when needed can be 
traced back to memory-based approaches [8] and lazy-learning [9-
10]. Within the scope of this paper, we will focus on the 
creation of local predictive models used to forecast each 
unit’s remaining life. First, we will use each local model to 



generate an estimated value of the predicted variable. Then, 
we will use an aggregation mechanism, based on the 
similarities of the peers, to determine the final output.   

For instance, let us assume that for a given probe Q we 
have retrieved m peers, Pi(Q), i=1,…, m. Each peer Pi(Q) has 
a similarity measure Si with the probe. Furthermore, each 
peer Pi has a track record of operational availability between 
failures O(Pi ) = [D1,i , D2,i , …, Dk(i),i ]. Note that each peer 
Pi(Q) will have k(i) availability pulses in its track history. For 
each peer Pi, the goal is to determine the duration of the next 
availability duration Dk(i)+1,i. Then we want to combine the 
prediction of all the peers {Dk(i)+1,i} (i=1,…, m) to estimate 
the availability duration for the probe Q. 

Since we did not have enough historical data to reliably 
generate local regressions, we experimented with simpler 
models, such as averages and medians. We found that the 
most reliable way of generating the next availability duration 
Dk(i)+1,i. from the operational availability vector  O(Pi ) = [D1,i 
, D2,i , …, Dk(i),i ] was to use an exponential average that gives 
more relevance to the most recent information, namely: 
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Again, critical to the performance of this model is the choice 
of the value of parameter α.  Section IV C will illustrate how 
to determine this value using evolutionary search. 

4) Aggregation of Local Models’ Outputs: We need to 
combine the individual predictions {Dk(i)+1,i} (i=1,…, m) of 
the peers Pi(Q) to generate the prediction of the next 
availability duration, DNext,Q for the probe Q. We define this 
aggregation as the similarity weighted average, by computing 
the weighted average of the peers’ individual predictions 
using their normalized similarity to the probe as a weight: 
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Given the critical role played by the weights {wi}, by the 
search parameters {(ai, bi )} and by exponent α, it was 
necessary to create a methodology that could generate the 
best values according to our metrics (classification precision).  

 
C. Evolution of Fuzzy Instance Based Classifiers (FIBC) 

After testing several manually-design peer-based models, 
we decided to use evolutionary search to develop and 
maintain the fuzzy instance based classifier. Using the 
wrapper methodology detailed in [6] we defined the use of 
Evolutionary Algorithms (EA’s) to tune the parameters of a 
classifier used to underwrite insurance applications. In this 
application, we extend evolutionary search beyond 
parametric tuning to include structural search, via attribute 
selection and weighting [11].  

1) EA Architecture: The EA’s are composed of a 
population of individuals (“chromosomes”), each of which 
contains a vector of elements that represent distinct tunable 
parameters within the FIBC configuration. Examples of 
tunable parameters include the range of each parameter used 
to retrieve neighbor instances and the relative weights 
associated with each parameter used for similarity 
calculation. The EA’s used two types of mutation operators 

(Gaussian and uniform), and no crossover. Its population 
(with 100 individuals) was evolved over 200 generations. 

2) Chromosome Representation: Each chromosome 
specifies a vector of weights [w1, w2, … wD] and defines an 
instance of the attribute space used by its associated 
classifier.  If }1,0{∈iw , we perform attribute selection, i.e., 

we select a crisp subset of the universe of potential attributes. 
If [ ]1,0∈iw  we perform attribute weighting, i.e., we define a 

fuzzy subset of the universe of potential attributes.  
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In summary, the first part of the chromosome, containing 
the weights vector [w1, w2, … wD,], defines the attribute space 
(e.g. the FIBC structure) and the relevance of each attribute in 
evaluating similarity. The second part of the chromosome, 
containing the vector of pairs [(a1, b1), … (ai, bi), … (aD, bD)] 
defines the parameter for the retrieval and similarity 
evaluation. The last part of the chromosome, containing the 
parameter α, defines the local model. 

FIBC Model 
(based on attribute subset)

Individual in EA population defines 
attribute subset and attribute weights

FIBC Applied to all Instances
using leave-one-out approach

Fitness Function 
based on Precision

Evolutionary Search

Complete Attribute Set

 
 

Fig 3. Fitness function using Wrapper Approach 
2) Fitness Function: The fitness function is computed using 
the wrapper approach [11] – see figure 3. For each 
chromosome, represented by (8), we instantiate its 
corresponding FIBC. Following a leave-one-out approach, we 
use the FIBC to predict the expected life of the unit under 
question – see (7) – following steps 1-4, as described in 
section IV B. We repeat this process for all units in the fleet, 
and we sort them in decreasing order, using their predicted 
duration DNext, Q. Then we select the top 20%. The fitness 
function of the chromosome is the precision of the 
classification, TP/(TP+FP).  

For each set of experiments, we used the three time slices 
illustrated in Figure 2. Our goal was to test the adaptability of 
the learning techniques to environmental, operational, or 



maintenance changes. Furthermore, we wanted to determine 
if their performance could improve over time, with 
incremental data acquisition. 

V. RESULTS 

A. First Experiment Set: Top 20% Past Performers 
For each time slice, we used EA’s to generate an 

optimized weighted subset of attributes to define the peers of 
each unit. We used the evolved peer approach to predict the 
best 20% of the fleet, based on their past performance. In this 
case a random selection would yield 20%. 

Time slice 1 (fleet size = 262 units; top 20% = 52 units): 
Evolved Peers outperformed both manually designed peers 
and heuristics/fleet -based approach: 48% vs. 41% vs. 32%. 

Time slice 2 (fleet size = 634 units; top 20% = 127 units): 
Evolved Peers outperformed both manually designed peers 
and heuristics/fleet -based approach: 56% vs. 55% vs. 46%. 

Time slice 3 (fleet size = 845 units; top 20% = 169 units): 
Evolved Peers outperformed both manually designed peers 
and heuristics/fleet -based approach: 60% vs. 54% vs. 50%. 

B. Second Experiment Set: Top 52 units Past Performers 
Since the fleet size at each start-up time was different, we 

repeated the same experiments keeping the number of units 
constant (52 units) over the three start-up times, instead of 
keeping a constant top 20%. Thus the random selection 
baseline changed from [20%-20%-20%] to [20%-8%-6%], 
i.e., 52/262=20%; 52/634=8%; 52/845 = 6%. Furthermore, 
given the superior performance of the evolved peers over the 
manually constructed peers, we decided to use the optimized 
peer design instead of the manual one in all subsequent 
experiments. The following results are shown in Figure 4. 

Time slice 1 (fleet size = 262 units; top 52 units= 20%): 
Evolved Peers outperformed heuristic/fleet -based approach: 
48% vs. 32% (vs. 20% random selection). 

Time slice 2 (fleet size = 634 units; top 52 units = 8%): 
Evolved Peers outperformed heuristic/fleet -based approach: 
56% vs. 37% (vs. 8% random selection). 

Time slice 3 (fleet size = 845 units; top 52 units = 6%): 
Evolved Peers outperformed heuristic/fleet -based approach: 
63.5% vs. 37% (vs. 6% random selection). 

C. Third Experiment Set: Top 20% Future Performers 
In the previous two sets of experiments, the targets for 

selection were the best-known units in the fleet based on their 
past performance. After these experiments were completed in 
April, we switched the target of the selection to the one with 
the best next pulse duration. Once again, the same 
methodology, based on evolved peers outperformed the rest – 
see Fig 5. In this case a random selection would yield 20%. 

Time slice 1 (fleet size = 262 units; top 20% = 52 units): 
Evolved Peers outperformed both heuristic/fleet and unit’s 
own history-based approach: 43% vs. 32% vs. 26.5%.  

Time slice 2 (fleet size = 634 units; top 20% = 127 units): 
Evolved Peers outperformed both heuristic/fleet and unit’s 
own history-based approach: 42.2% vs. 42% vs. 33.6%.  

Time slice 3 (fleet size = 845 units; top 20% = 169 units): 
Evolved Peers outperformed both heuristic/fleet and unit’s 
own history-based approach: 54% vs. 36% vs. 33.8%.  
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Fig. 4. 2nd Set of Experiments (52 Units; Past Performers) 
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Fig. 5. 3rd Set of Experiments (20% - Future Performers) 

VI. CONCLUSIONS 

A. Manually Designed versus Evolved Peer-based Models  
The static (manually designed) peers outperformed both 

single and multiple heuristics based on fleet-wide data. They 
exhibited a graceful degradation when critical information 
was not provided (robustness to information loss). We 
performed an experiment comparing the manually designed 
peers with the best heuristics. We sorted the variables in 
decreasing order of information content and observed the 
decay in precision as the first variable, the first two variables, 
first three variables, etc. were removed from each model. The 
experiment showed that the heuristics precision drops 
abruptly (from 50%to 30%), while the peer-based prediction 
drops from 54% to 44% and then stabilizes at that level. The 
peers designed by the Evolutionary Algorithms) provided the 
best accuracy overall: 

–60.3% = over 3 x random, 1.2x heuristics on selection 
for top 20% (based on past performance) 

–63.5% = over 10 x random, 1.7 x heuristics on selection 
for top 52 units (based on past performance) 

–55.0% = over 2.5 x random, 1.5 x heuristics on 
selection for top 20% (based on future performance). 

Dynamic criteria for peer recognition (by evolving 
attribute weighting) demonstrated the ability to adapt to 
changing operational and maintenance environments. The 



evolution of the search parameters {(ai, bi)} provided an 
additional performance improvement reducing the number of 
null queries while improving the overall precision of the 
classifier. Table 1 shows the value of the weights and search 
parameter settings for time-slice 3, while Figure 6 illustrates 
the evolution of the weights over the three time slices. 

TABLE II 
WEIGHTS AND SEARCH PARAMETERS FOR TIME-SLICE 3 

Index Feature Weight a Range (a) b Range (b)
1 RY_Rec/Yr 9.11 5.6 [0-6] 3.73 [0.5-5]
2 RY_Rec/100K_Miles 8.81 5.3 [0-8] 2.57 [0.5-5]
3 RY_Rec/100K_Engine_Hrs 7.35 35.9 [20-45] 2.67 [0.5-5]
4 RY_Rec_Count 5.69 8.5 [2.5-12] 3.37 [0.5-5]
5 RY_Rec/100K_Eng_Hrs_Move 4.08 10.1 [5-30] 2.75 [0.5-5]
6 Tot_Rec_Count 1.33 18.7 [3-50] 3.20 [0.5-5]
7 R_Rec_Count 0.87 1.0 [0.5-8] 3.16 [0.5-5]
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Fig. 6. Evolution of weights for the top seven variables 

over the three time slices (Index number described in Table I) 

B. Future Directions 
Our experiments have shown the applicability of 

evolutionary algorithms, used in a wrapper approach, to 
select the best attributes for representing peers and to define 
similarity measures for identifying the most similar peers for 
a given unit. By evolving the models over different time 
slices, we have also shown our ability to dynamically adapt 
the neighborhoods of peers using incremental operational and 
maintenance data. In future work, we could extend the 
structural design of the attribute space (for the definition of 
peers). By using genetic programming in lieu of evolutionary 
algorithms, we could extend attribute selection and weighting 
to attribute construction. We could also improve the fitness 
function to tradeoff classifier accuracy and confidence by 
adding measure of representation parsimony and find Pareto 
fronts for different tradeoffs.  

We could also extend our approach by generating more 
sophisticated local models for prediction. Our current 
assumption was that each peer had a rather “feeble” track-
history, which motivated the peer approach to begin with. As 
such we could not use too many degrees of freedom in 
creating the local models and we limited ourselves to an 
exponential average, completely defined by the value of α.  
In situations where the peers have a richer track-history, we 
could experiment with more complex models [10], whose 
parameters could be obtained using a local search method, 
e.g., error minimization, inside each EA’s trial. This would be 
another example of intertwining local with global search [13].  

By evolving the models over different time slices, we 
have shown a possible role that evolutionary search can play 

in the maintenance of models, as EA’s provide a mechanism 
for model updating, preventing model obsolescence, and 
supporting model lifecycle [1,12]. 
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